Subcellular Nutrient Element Localization and Enrichment in Ecto- and Arbuscular Mycorrhizas of Field-Grown Beech and Ash Trees Indicate Functional Differences
نویسندگان
چکیده
Mycorrhizas are the chief organ for plant mineral nutrient acquisition. In temperate, mixed forests, ash roots (Fraxinus excelsior) are colonized by arbuscular mycorrhizal fungi (AM) and beech roots (Fagus sylvatica) by ectomycorrhizal fungi (EcM). Knowledge on the functions of different mycorrhizal species that coexist in the same environment is scarce. The concentrations of nutrient elements in plant and fungal cells can inform on nutrient accessibility and interspecific differences of mycorrhizal life forms. Here, we hypothesized that mycorrhizal fungal species exhibit interspecific differences in mineral nutrient concentrations and that the differences correlate with the mineral nutrient concentrations of their associated root cells. Abundant mycorrhizal fungal species of mature beech and ash trees in a long-term undisturbed forest ecosystem were the EcM Lactarius subdulcis, Clavulina cristata and Cenococcum geophilum and the AM Glomus sp. Mineral nutrient subcellular localization and quantities of the mycorrhizas were analysed after non-aqueous sample preparation by electron dispersive X-ray transmission electron microscopy. Cenococcum geophilum contained the highest sulphur, Clavulina cristata the highest calcium levels, and Glomus, in which cations and P were generally high, exhibited the highest potassium levels. Lactarius subdulcis-associated root cells contained the highest phosphorus levels. The root cell concentrations of K, Mg and P were unrelated to those of the associated fungal structures, whereas S and Ca showed significant correlations between fungal and plant concentrations of those elements. Our results support profound interspecific differences for mineral nutrient acquisition among mycorrhizas formed by different fungal taxa. The lack of correlation between some plant and fungal nutrient element concentrations may reflect different retention of mineral nutrients in the fungal part of the symbiosis. High mineral concentrations, especially of potassium, in Glomus sp. suggest that the well-known influence of tree species on chemical soil properties may be related to their mycorrhizal associates.
منابع مشابه
Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed Central European forest.
Knowledge is limited about whether root nutrient concentrations are affected by mixtures of tree species and interspecific root competition. The goal of this field study was to investigate root nutrient element concentrations in relation to root and ectomycorrhizal (EM) diversity in six different mixtures of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia sp.) in an old-growth...
متن کاملRoot-derived carbon and nitrogen from beech and ash trees differentially fuel soil animal food webs of deciduous forests
Evidence is increasing that soil animal food webs are fueled by root-derived carbon (C) and also by root-derived nitrogen (N). Functioning as link between the above- and belowground system, trees and their species identity are important drivers structuring soil animal communities. A pulse labeling experiment using 15N and 13C was conducted by exposing beech (Fagus sylvatica) and ash (Fraxinus e...
متن کاملQuantifying flows through metabolic networks and the prospects for fluxomic studies of mycorrhizas.
Dickie IA. 2007. Host preference, niches and fungal diversity. New Phytologist 174: 230–233. Fitter AH. 2006. What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytologist 172: 3–6. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y. 2005. Nitrogen transfer in the ...
متن کاملSpecies Diversity of Trees and Forest Floor Plants in Oriental beech Forest Types of Shastkalate Educational and Research Forest, Gorgan)
Trees are the most important biological elements of forest ecosystems. The variability of the tree species composition inhabiting in the Oriental beech forest, not only forms different forest types but also has a remarkable impact on the species diversity of forest floor plants, due to the existence of trees in the overstory layer. In this research, forest types of an an Oriental beech were ide...
متن کاملEvaluation of non-destructive Meyer method for determination of bark volume of beech (Fagus orientalis Lipsky) in different geographical aspects
The non-destructive Meyer method was evaluated to determine the bark volume of beech (Fagus orientalis Lipsky) stands in north of Iran. The sample size was 185 standing trees collected from 4 geographical aspects (north, south, west and east) aspects. The constant k values and bark thickness (2e mm) of 185 standing trees were used to calculate the bark volume by the Meyer method. In this study,...
متن کامل